3D theories and 3-mfds

2024 弦论、引力与引力波研讨会

Shi Cheng

Aug-04-2024 Fudan University

w/ P. Sułkowski 2302.13371, 2310.07624, and work in progress

Motivation

• 3d theories with 4 supercharges are not understood yet.

• String theory could construct gauge theories, such as M5-branes on 3-manifolds. However, we are still very far away from the final answer.

Tools

- 3d N=2 gauge theories: dualities, gauging
- String theories: M-theory/IIB duality, 3d brane webs
- 3-manifolds: surgery, Kirby moves

• Instead of non-abelian theories, we find the abelian theories are already powerful engough to detect 3-manifolds.

• In this talk, we will show a remarkable match between structures:

• Hence, 3-manifolds can be used to understand 3d gauge theories

3d abelian theories -- plumbing theories

• A new quiver diagram (plumbing graphs): $\bullet_k U(1)_k$

Charges:

3d dualities

Gauge the mirror duality -> ST-moves

$$1\Phi \leftrightarrow U(1) + 1\Phi$$

$$\square \quad \stackrel{\operatorname{ST}}{\longleftrightarrow} \quad \stackrel{\square}{\longrightarrow} \quad \stackrel{\square}{\longrightarrow$$

Flavor symmetry:

$$U(1)_F \longleftrightarrow U(1)_T$$

Gauge the U(1):

Application

• Examples

Decoupling

• After decoupling the matter, ST-moves reduce to Kirby moves.

Why is it a Kirby move?

Closed 3-manifolds, T[M_3] theories

• In Gadde, Gukov, Putrov "Fivebranes and 4-mfds" [1306.4320]. Pure plumbing theories are realized by wrapping a single M5-brane on closed three-manifolds.

Linking number = CS levels

• Lens space L(k,1) in M-theory should be elliptically fibered:

					_					
11d	branes	0	1	2	3	4	5	6	9	#
M-theory	$N_c \text{ M5}$	0	1	2				6	$9_{\rm A}$	#
IIA	N_c D4	0	1	2				6	$9_{\rm A}$	
IIB	N_c D3	0	1	2				6		
IIA	D0									#
IIA	D6	0	1	2	3	4	5		$9_{\rm A}$	
IIB	$D5 \xrightarrow{S} NS5$	0	1	2	3	4	5			
M-theory	M5"	0	1	2	3	4			9 _A	
IIA	NS5"	0	1	2	3	4			$9_{\rm A}$	
IIB	$NS5'' \xrightarrow{S} D5$	0	1	2	3	4			9_{B}	
M-theory	M2	0					5		$9_{\rm A}$	
IIB	$D1 \xrightarrow{S} F1$	0					5			

Putting a M5-brane on it duals to a 3d brane web of U(1)_k

Kirby moves

• For 3-mfds, the Kirby-I move is an equivalent surgery.

 Kirby moves are integrating in/out gauge node U(1)_k:

Question: how to add matters?

• Does the matter <u>to corresponde</u> to some structures on the 3-mfds?

Identical surgery and R. twist (

The identical surgery, and rational equivalent surgery

An observation

Does the matter node correspond to the identical surgery circle?

- However, the identical circle can be ignored on 3-mfds and is not physical, while the matter field is physical.
- So, we should do something to make it physical.

Ooguri-Vafa defect -> matter

Adding D5-branes leads to matters

The 1 M5-brane on OV defect in the cotangle bundle realizes a matter field.

 The neighborhood of the intersection is always an identical surgery circle:

- The matter circle/intersection has to be S_q'
- Example:

ST-move and 3-mfds

• ST-move is a particular Kirby-I move with an OV-defect/brane:

Kirby-II: handle-slides for gauge circles

Kirby-II is a connected sum of surgery circles:

• In the presence of the OV defect (or matter):

Kirby-II is a linear sum of scalar fields:

$$\phi_1' = n\phi_2 + \phi_1, \phi_2' = \phi_2$$

Seiberg duality

SQED-XYZ duality

Superpotential

$$\mathcal{W} = 0$$
 $\mathcal{W} = \mathbb{F}, \mathbb{F}_2 \mathcal{M}.$

• Flavor symmetry $u(1)_1 \times u(1)_2$

• Gauging flavor symmetries leads to superpotential triangles.

Connected sum

Handle slides for matter circles:

Superpotential arises from connected sums and gauging.

HW moves interpretation

Everything arises from a fusion identiy, which related to quantum group.

$$\left| \frac{(xy,q)_n}{(q,q)_n} = \sum_{k=0}^n \frac{(x,q)_{n-k}}{(q,q)_{n-k}} \cdot \frac{(y,q)_k}{(q,q)_k} x^k \right|$$

Open question

• Non-abelian theories.

Thank you!

